Analysis summary
Analysis summary
The exon read counts were filtered for artifacts that could affect the subsequent normalization and statistical testing procedures as follows: if an annotated gene had up to 5 exons, read presence was required in at least 2 of the exons, else if an annotated gene had more than 5 exons, then read presence was required in at least 0.2x⌈E⌉ exons, where ⌈.⌉ is the ceiling mathematical function. The application of this filter resulted in the exclusion of 16530 genes from further analysis. The total number of genes excluded due to the application of exon filters was 16530. The final read counts for each gene model were calculated as the sums of their exon reads, creating a gene counts table where each row corresponded to an Ensembl gene model and each column corresponded to an RNA-Seq sample. The gene counts table was normalized for inherent systematic or experimental biases (e.g. sequencing depth, gene length, GC content bias etc. using the Bioconductor package DESeq after removing genes that had zero counts over all the RNA-Seq samples (12928 genes). The output of the normalization algorithm was a table with normalized counts, which can be used for differential expression analysis with statistical algorithms developed specifically for count data. Prior to the statistical testing procedure, the gene read counts were filtered for possible artifacts that may affect the subsequent statistical testing procedures. Genes/transcripts presenting any of the following were excluded from further analysis: i) genes with length less than 100bp (714 genes), ii) genes with read counts below the 90th quantile of the counts of the following genes, known to not being expressed from the related literature: Dub1, Gdnf, Gria2, Kcna7, Kcna1, Klf4, Myod1, Myoz1, Myoz2, Nalcn, Nanos1, Nanos2, Nfatc2, Neurod1, Nkx2-1, Nov, Nova1, Nrcam, Phactr1, Phyhip, Ptprn, Ptpro, Rbmy1a1, Scn2a1, Myoc, Mypn, Rlbp1, Ntf5, Bai3, Ttn, Dnahc3, Magea1, Gpc2, Cdh17, Bcl2, Ckm, Slc22a2, Slc22a8, Ucp3, Cidea, Ifng, Tubb3, Olig2, Sox2(15254 genes with cutoff value28 normalized read counts), iii) genes whose biotype matched the following: rRNA (130 genes). The total number of genes excluded due to the application of gene filters was 845. The total (unified) number of genes excluded due to the application of all filters was 28425. The resulting gene counts table was subjected to differential expression analysis for the contrasts e18.5 versus e15.5, P0.5 versus e15.5, P22 versus e15.5, P60 versus e15.5, e18.5 versus P0.5 versus P4 versus P14 versus P22 versus P60 versus e15.5 using the Bioconductor packages DESeq2, edgeR, limma, ABSSeq, DSS. In order to combine the statistical significance from multiple algorithms and perform meta-analysis, the PANDORA weighted p-value across results method was applied. The final numbers of differentially expressed genes were (per contrast): for the contrast e18.5 versus e15.5, 562 (0) statistically significant genes were found with a p-value (FDR or adjusted p-value) threshold of 0.05 and of these, 359 were up-regulated, 187 were down-regulated and 16 were not differentially expressed according to an absolute fold change cutoff value of 1 in log2 scale, for the contrast P0.5 versus e15.5, 247 (0) statistically significant genes were found with a p-value (FDR or adjusted p-value) threshold of 0.05 and of these, 106 were up-regulated, 141 were down-regulated and 0 were not differentially expressed according to an absolute fold change cutoff value of 1 in log2 scale, for the contrast P22 versus e15.5, 916 (33) statistically significant genes were found with a p-value (FDR or adjusted p-value) threshold of 0.05 and of these, 127 (2) were up-regulated, 779 (31) were down-regulated and 10 (0) were not differentially expressed according to an absolute fold change cutoff value of 1 in log2 scale, for the contrast P60 versus e15.5, 3060 (1787) statistically significant genes were found with a p-value (FDR or adjusted p-value) threshold of 0.05 and of these, 1180 (686) were up-regulated, 1509 (1085) were down-regulated and 371 (16) were not differentially expressed according to an absolute fold change cutoff value of 1 in log2 scale, for the contrast e18.5 versus P0.5 versus P4 versus P14 versus P22 versus P60 versus e15.5, 1044 (398) differentially expressed genes were found with a p-value (FDR or adjusted p-value) threshold of 0.05 at least in one condition. Literature references for all the algorithms used can be found at the end of this report.
Input options
Input options
Read counts file: previously stored project
Conditions: e15.5, e18.5, P0.5, P4, P14, P22, P60
Samples included: e15.5_BR1, e15.5_BR2, e18.5_BR1, e18.5_BR2, P0.5_BR1, P0.5_BR2, P4_BR1, P4_BR2, P14_BR1, P14_BR2, P22_BR1, P22_BR2, P60_BR1, P60_BR2
Samples excluded: none
Requested contrasts: e18.5_vs_e15.5, P0.5_vs_e15.5, P22_vs_e15.5, P60_vs_e15.5, e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
Library sizes: not available
Organism: mouse (Mus musculus), genome version alias mm9
Annotation source: Ensembl genomes
Count type: exon
Exon filters: minActiveExons
-
minActiveExons
-
exonsPerGene: 5
-
minExons: 2
-
frac: 0.2
Gene filters: length, avgReads, expression, biotype
-
expression
-
median: FALSE
-
mean: FALSE
-
quantile: NA
-
known: Dub1, Gdnf, Gria2, Kcna7, Kcna1, Klf4, Myod1, Myoz1, Myoz2, Nalcn, Nanos1, Nanos2, Nfatc2, Neurod1, Nkx2-1, Nov, Nova1, Nrcam, Phactr1, Phyhip, Ptprn, Ptpro, Rbmy1a1, Scn2a1, Myoc, Mypn, Rlbp1, Ntf5, Bai3, Ttn, Dnahc3, Magea1, Gpc2, Cdh17, Bcl2, Ckm, Slc22a2, Slc22a8, Ucp3, Cidea, Ifng, Tubb3, Olig2, Sox2
-
custom: NA
-
biotype
-
pseudogene: FALSE
-
snRNA: FALSE
-
protein_coding: FALSE
-
antisense: FALSE
-
miRNA: FALSE
-
lincRNA: FALSE
-
snoRNA: FALSE
-
processed_transcript: FALSE
-
misc_RNA: FALSE
-
rRNA: TRUE
-
sense_overlapping: FALSE
-
sense_intronic: FALSE
-
polymorphic_pseudogene: FALSE
-
non_coding: FALSE
-
three_prime_overlapping_ncrna: FALSE
-
IG_C_gene: FALSE
-
IG_J_gene: FALSE
-
IG_D_gene: FALSE
-
IG_V_gene: FALSE
-
ncrna_host: FALSE
Filter application: after normalization
Normalization algorithm: DESeq
Normalization arguments: locfunc
-
[[list(new(“standardGeneric”, .Data = function (x, na.rm = FALSE, …) standardGeneric(“median”), generic = “median”, package = “stats”, group = list(), valueClass = character(0), signature = c(“x”, “na.rm”), default = new(“derivedDefaultMethod”, .Data = function (x, na.rm = FALSE, …) UseMethod(“median”), target = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), defined = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), generic = “median”), skeleton = (new(“derivedDefaultMethod”, .Data = function (x, na.rm = FALSE, …) UseMethod(“median”), target = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), defined = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), generic = “median”))(x, na.rm, …)))locfunc
Statistical algorithm(s): DESeq2, edgeR, limma, ABSSeq, DSS
Statistical arguments for DESeq2: tidy, fitType, maxit, quiet, modelMatrix, betaPrior, betaTol, useOptim, useT, useQR, lfcThreshold, altHypothesis, independentFiltering, alpha, pAdjustMethod, format, addMLE, parallel
-
tidy: FALSE
-
fitType: parametric
-
maxit: 100
-
quiet: FALSE
-
betaPrior: FALSE
-
betaTol: 1e-08
-
useOptim: TRUE
-
useT: FALSE
-
useQR: TRUE
-
lfcThreshold: 0
-
altHypothesis: greaterAbs
-
independentFiltering: TRUE
-
alpha: 0.1
-
pAdjustMethod: BH
-
format: DataFrame
-
addMLE: FALSE
-
parallel: FALSE
Statistical arguments for edgeR: main.method, rowsum.filter, prior.df, trend, span, tag.method, grid.length, grid.range, offset, glm.method, subset, AveLogCPM, trend.method, dispersion, offset, weights, lib.size, prior.count, start, method, test, abundance.trend, robust, winsor.tail.p
-
main.method: classic
-
rowsum.filter: 5
-
prior.df: 10
-
trend: movingave
-
tag.method: grid
-
grid.length: 11
-
grid.range: -6, 6
-
glm.method: CoxReid
-
subset: 10000
-
trend.method: auto
-
prior.count: 0.125
-
method: auto
-
test: chisq
-
abundance.trend: TRUE
-
robust: FALSE
-
winsor.tail.p: 0.05, 0.1
Statistical arguments for limma: normalize.method
Statistical arguments for ABSSeq: paired, minDispersion, minRates, maxRates, LevelstoNormFC, adjmethod, replaceOutliers, useaFold, quiet, lmodel, preval, qforkappa, scale
-
paired: FALSE
-
minRates: 0.1
-
maxRates: 0.3
-
LevelstoNormFC: 100
-
adjmethod: BH
-
replaceOutliers: TRUE
-
useaFold: FALSE
-
quiet: FALSE
-
lmodel: TRUE
-
preval: 0.05
-
qforkappa: 0
-
scale: FALSE
Statistical arguments for DSS: trend, equal.var
-
trend: FALSE
-
equal.var: FALSE
Meta-analysis method: PANDORA weighted p-value across results
Multiple testing correction: Benjamini-Hochberg FDR
p-value threshold: 0.05
Logarithmic tranformation offset: 1
Analysis preset: not available
Quality control plots:
Figure format: png
Output directory: /home/panos/public_html/metaseqR2_showcase/metaseqR2_LiverDevelopment_PANDORA
Output data: Annotation, p-value, Adjusted p-value (FDR), Combined p-value, Adjusted combined p-value (FDR), Fold change
Output scale(s): Natural scale
Output values: Normalized values
Output statistics: Mean
Total run time: 04 minutes 56 seconds
Command
The differential expression analysis and this report were generated using the following command:
metaseqr2(counts = file.path(exportPath, "metaseqR2_LiverDevelopment_PANDORA",
"data", "gene_model.RData"), contrast = theContrasts, org = "mm9",
countType = "exon", normalization = "deseq", statistics = c("deseq2",
"edger", "limma", "absseq", "dss"), metaP = "pandora",
weight = weights, figFormat = "png", exportWhere = file.path(exportPath,
"metaseqR2_LiverDevelopment_PANDORA"), restrictCores = 0.5,
qcPlots = c("foldvenn"), exonFilters = list(minActiveExons = list(exonsPerGene = 5,
minExons = 2, frac = 1/5)), geneFilters = list(length = list(length = 100),
avgReads = NULL, expression = list(median = FALSE, mean = FALSE,
quantile = NA, known = spikeOut, custom = NA), biotype = getDefaults("biotypeFilter",
"mm9")), pcut = 0.05, exportWhat = c("annotation",
"p_value", "adj_p_value", "meta_p_value", "adj_meta_p_value",
"fold_change"), exportScale = c("natural"), exportValues = "normalized",
exportStats = "mean", exportCountsTable = TRUE, reportTop = 0.05,
createTracks = FALSE)
The above command generated the following log output:
INFO [2020-04-29 14:34:39] 2020-04-29 14:34:39: Data processing started…
INFO [2020-04-29 14:34:39] Read counts file: previously stored project
INFO [2020-04-29 14:34:39] Conditions: e15.5, e18.5, P0.5, P4, P14, P22, P60
INFO [2020-04-29 14:34:39] Samples to include: e15.5_BR1, e15.5_BR2, e18.5_BR1, e18.5_BR2, P0.5_BR1, P0.5_BR2, P4_BR1, P4_BR2, P14_BR1, P14_BR2, P22_BR1, P22_BR2, P60_BR1, P60_BR2
INFO [2020-04-29 14:34:39] Samples to exclude: none
INFO [2020-04-29 14:34:39] Requested contrasts: e18.5_vs_e15.5, P0.5_vs_e15.5, P22_vs_e15.5, P60_vs_e15.5, e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
INFO [2020-04-29 14:34:39] Organism: mm9
INFO [2020-04-29 14:34:39] Reference source: ensembl
INFO [2020-04-29 14:34:39] Count type: exon
INFO [2020-04-29 14:34:39] Transcriptional level: gene
INFO [2020-04-29 14:34:39] Exon filters: minActiveExons
INFO [2020-04-29 14:34:39] minActiveExons:
INFO [2020-04-29 14:34:39] exonsPerGene: 5
INFO [2020-04-29 14:34:39] minExons: 2
INFO [2020-04-29 14:34:39] frac: 0.2
INFO [2020-04-29 14:34:39] Gene filters: length, avgReads, expression, biotype
INFO [2020-04-29 14:34:39] length:
INFO [2020-04-29 14:34:39] length: 100
INFO [2020-04-29 14:34:39] avgReads:
INFO [2020-04-29 14:34:39] expression:
INFO [2020-04-29 14:34:39] median: FALSE
INFO [2020-04-29 14:34:39] mean: FALSE
INFO [2020-04-29 14:34:39] quantile: NA
INFO [2020-04-29 14:34:39] known: Dub1, Gdnf, Gria2, Kcna7, Kcna1, Klf4, Myod1, Myoz1, Myoz2, Nalcn, Nanos1, Nanos2, Nfatc2, Neurod1, Nkx2-1, Nov, Nova1, Nrcam, Phactr1, Phyhip, Ptprn, Ptpro, Rbmy1a1, Scn2a1, Myoc, Mypn, Rlbp1, Ntf5, Bai3, Ttn, Dnahc3, Magea1, Gpc2, Cdh17, Bcl2, Ckm, Slc22a2, Slc22a8, Ucp3, Cidea, Ifng, Tubb3, Olig2, Sox2
INFO [2020-04-29 14:34:39] custom: NA
INFO [2020-04-29 14:34:39] biotype:
INFO [2020-04-29 14:34:39] pseudogene: FALSE
INFO [2020-04-29 14:34:39] snRNA: FALSE
INFO [2020-04-29 14:34:39] protein_coding: FALSE
INFO [2020-04-29 14:34:39] antisense: FALSE
INFO [2020-04-29 14:34:39] miRNA: FALSE
INFO [2020-04-29 14:34:39] lincRNA: FALSE
INFO [2020-04-29 14:34:39] snoRNA: FALSE
INFO [2020-04-29 14:34:39] processed_transcript: FALSE
INFO [2020-04-29 14:34:39] misc_RNA: FALSE
INFO [2020-04-29 14:34:39] rRNA: TRUE
INFO [2020-04-29 14:34:39] sense_overlapping: FALSE
INFO [2020-04-29 14:34:39] sense_intronic: FALSE
INFO [2020-04-29 14:34:39] polymorphic_pseudogene: FALSE
INFO [2020-04-29 14:34:39] non_coding: FALSE
INFO [2020-04-29 14:34:39] three_prime_overlapping_ncrna: FALSE
INFO [2020-04-29 14:34:39] IG_C_gene: FALSE
INFO [2020-04-29 14:34:39] IG_J_gene: FALSE
INFO [2020-04-29 14:34:39] IG_D_gene: FALSE
INFO [2020-04-29 14:34:39] IG_V_gene: FALSE
INFO [2020-04-29 14:34:39] ncrna_host: FALSE
INFO [2020-04-29 14:34:39] Filter application: postnorm
INFO [2020-04-29 14:34:39] Normalization algorithm: deseq
INFO [2020-04-29 14:34:39] Normalization arguments:
INFO [2020-04-29 14:34:39] locfunc:
INFO [2020-04-29 14:34:39] [[list(new(“standardGeneric”, .Data = function (x, na.rm = FALSE, …) standardGeneric(“median”), generic = “median”, package = “stats”, group = list(), valueClass = character(0), signature = c(“x”, “na.rm”), default = new(“derivedDefaultMethod”, .Data = function (x, na.rm = FALSE, …) UseMethod(“median”), target = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), defined = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), generic = “median”), skeleton = (new(“derivedDefaultMethod”, .Data = function (x, na.rm = FALSE, …) UseMethod(“median”), target = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), defined = new(“signature”, .Data = “ANY”, names = “x”, package = “methods”), generic = “median”))(x, na.rm, …)))locfunc
INFO [2020-04-29 14:34:39] Statistical algorithm: deseq2, edger, limma, absseq, dss
INFO [2020-04-29 14:34:39] Statistical arguments:
INFO [2020-04-29 14:34:39] deseq2: FALSE, parametric, 100, FALSE, NULL, FALSE, 1e-08, TRUE, FALSE, TRUE, 0, greaterAbs, TRUE, 0.1, BH, DataFrame, FALSE, FALSE
INFO [2020-04-29 14:34:39] edger: classic, 5, 10, movingave, NULL, grid, 11, c(-6, 6), NULL, CoxReid, 10000, NULL, auto, NULL, NULL, NULL, NULL, 0.125, NULL, auto, chisq, TRUE, FALSE, c(0.05, 0.1)
INFO [2020-04-29 14:34:39] limma: none
INFO [2020-04-29 14:34:39] absseq: FALSE, NULL, 0.1, 0.3, 100, BH, TRUE, FALSE, FALSE, TRUE, 0.05, 0, FALSE
INFO [2020-04-29 14:34:39] dss: FALSE, FALSE
INFO [2020-04-29 14:34:39] Meta-analysis method: pandora
INFO [2020-04-29 14:34:39] Multiple testing correction: BH
INFO [2020-04-29 14:34:39] p-value threshold: 0.05
INFO [2020-04-29 14:34:39] Logarithmic transformation offset: 1
INFO [2020-04-29 14:34:39] Quality control plots: foldvenn
INFO [2020-04-29 14:34:39] Figure format: png
INFO [2020-04-29 14:34:39] Output directory: /home/panos/public_html/metaseqR2_showcase/metaseqR2_LiverDevelopment_PANDORA
INFO [2020-04-29 14:34:39] Output data: annotation, p_value, adj_p_value, meta_p_value, adj_meta_p_value, fold_change
INFO [2020-04-29 14:34:39] Output scale(s): natural
INFO [2020-04-29 14:34:39] Output values: normalized
INFO [2020-04-29 14:34:39] Loading gene annotation…
INFO [2020-04-29 14:34:40] Applying exon filter minActiveExons…
INFO [2020-04-29 14:34:40] Checking read presence in exons for e15.5_BR1…
INFO [2020-04-29 14:34:43] Checking read presence in exons for e15.5_BR2…
INFO [2020-04-29 14:34:46] Checking read presence in exons for e18.5_BR1…
INFO [2020-04-29 14:34:48] Checking read presence in exons for e18.5_BR2…
INFO [2020-04-29 14:34:50] Checking read presence in exons for P0.5_BR1…
INFO [2020-04-29 14:34:53] Checking read presence in exons for P0.5_BR2…
INFO [2020-04-29 14:34:55] Checking read presence in exons for P4_BR1…
INFO [2020-04-29 14:34:57] Checking read presence in exons for P4_BR2…
INFO [2020-04-29 14:34:59] Checking read presence in exons for P14_BR1…
INFO [2020-04-29 14:35:02] Checking read presence in exons for P14_BR2…
INFO [2020-04-29 14:35:04] Checking read presence in exons for P22_BR1…
INFO [2020-04-29 14:35:06] Checking read presence in exons for P22_BR2…
INFO [2020-04-29 14:35:08] Checking read presence in exons for P60_BR1…
INFO [2020-04-29 14:35:10] Checking read presence in exons for P60_BR2…
INFO [2020-04-29 14:35:13] Summarizing count data…
INFO [2020-04-29 14:35:14] Removing genes with zero counts in all samples…
INFO [2020-04-29 14:35:14] Normalizing with: deseq
INFO [2020-04-29 14:35:15] Applying gene filter length…
INFO [2020-04-29 14:35:15] Threshold below which ignored: 100
INFO [2020-04-29 14:35:15] Applying gene filter avgReads…
INFO [2020-04-29 14:35:15] Applying gene filter expression…
INFO [2020-04-29 14:35:15] Threshold below which ignored: 28
INFO [2020-04-29 14:35:15] Applying gene filter biotype…
INFO [2020-04-29 14:35:15] Biotypes ignored: rRNA
INFO [2020-04-29 14:35:16] 28425 genes filtered out
INFO [2020-04-29 14:35:16] 9158 genes remain after filtering
INFO [2020-04-29 14:35:16] Running statistical tests with: deseq2
INFO [2020-04-29 14:35:26] Contrast: e18.5_vs_e15.5
INFO [2020-04-29 14:35:33] Contrast: P0.5_vs_e15.5
INFO [2020-04-29 14:35:40] Contrast: P22_vs_e15.5
INFO [2020-04-29 14:35:47] Contrast: P60_vs_e15.5
INFO [2020-04-29 14:35:54] Contrast: e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
INFO [2020-04-29 14:36:07] Contrast e18.5_vs_e15.5: found 743 genes
INFO [2020-04-29 14:36:07] Contrast P0.5_vs_e15.5: found 1003 genes
INFO [2020-04-29 14:36:07] Contrast P22_vs_e15.5: found 2579 genes
INFO [2020-04-29 14:36:07] Contrast P60_vs_e15.5: found 3224 genes
INFO [2020-04-29 14:36:07] Contrast e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5: found 3715 genes
INFO [2020-04-29 14:36:07] Running statistical tests with: edger
INFO [2020-04-29 14:36:12] Contrast: e18.5_vs_e15.5
INFO [2020-04-29 14:36:17] Contrast: P0.5_vs_e15.5
INFO [2020-04-29 14:36:19] Contrast: P22_vs_e15.5
INFO [2020-04-29 14:36:21] Contrast: P60_vs_e15.5
INFO [2020-04-29 14:36:23] Contrast: e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
INFO [2020-04-29 14:36:23] Contrast e18.5_vs_e15.5: found 60 genes
INFO [2020-04-29 14:36:23] Contrast P0.5_vs_e15.5: found 102 genes
INFO [2020-04-29 14:36:23] Contrast P22_vs_e15.5: found 1063 genes
INFO [2020-04-29 14:36:23] Contrast P60_vs_e15.5: found 1136 genes
INFO [2020-04-29 14:36:23] Contrast e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5: found 1133 genes
INFO [2020-04-29 14:36:23] Running statistical tests with: limma
INFO [2020-04-29 14:36:23] Contrast: e18.5_vs_e15.5
INFO [2020-04-29 14:36:25] Contrast: P0.5_vs_e15.5
INFO [2020-04-29 14:36:27] Contrast: P22_vs_e15.5
INFO [2020-04-29 14:36:28] Contrast: P60_vs_e15.5
INFO [2020-04-29 14:36:30] Contrast: e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
INFO [2020-04-29 14:36:32] Contrast e18.5_vs_e15.5: found 2200 genes
INFO [2020-04-29 14:36:32] Contrast P0.5_vs_e15.5: found 501 genes
INFO [2020-04-29 14:36:32] Contrast P22_vs_e15.5: found 2547 genes
INFO [2020-04-29 14:36:32] Contrast P60_vs_e15.5: found 5119 genes
INFO [2020-04-29 14:36:32] Contrast e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5: found 1046 genes
INFO [2020-04-29 14:36:32] Running statistical tests with: absseq
INFO [2020-04-29 14:36:32] Contrast: e18.5_vs_e15.5
INFO [2020-04-29 14:36:39] Contrast: P0.5_vs_e15.5
INFO [2020-04-29 14:36:45] Contrast: P22_vs_e15.5
INFO [2020-04-29 14:36:51] Contrast: P60_vs_e15.5
INFO [2020-04-29 14:36:58] Contrast: e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
INFO [2020-04-29 14:37:05] Contrast e18.5_vs_e15.5: found 504 genes
INFO [2020-04-29 14:37:05] Contrast P0.5_vs_e15.5: found 394 genes
INFO [2020-04-29 14:37:05] Contrast P22_vs_e15.5: found 314 genes
INFO [2020-04-29 14:37:05] Contrast P60_vs_e15.5: found 2432 genes
INFO [2020-04-29 14:37:05] Contrast e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5: found 286 genes
INFO [2020-04-29 14:37:05] Running statistical tests with: dss
INFO [2020-04-29 14:37:09] Contrast: e18.5_vs_e15.5
INFO [2020-04-29 14:37:09] Contrast: P0.5_vs_e15.5
INFO [2020-04-29 14:37:10] Contrast: P22_vs_e15.5
INFO [2020-04-29 14:37:10] Contrast: P60_vs_e15.5
INFO [2020-04-29 14:37:10] Contrast: e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
WARN [2020-04-29 14:37:10] DSS differential expression algorithm does not support multi-level designs (with more than two levels in a factor to be compared)! Switching to DESeq. Comparison: e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
INFO [2020-04-29 14:38:35] Contrast e18.5_vs_e15.5: found 1881 genes
INFO [2020-04-29 14:38:35] Contrast P0.5_vs_e15.5: found 2322 genes
INFO [2020-04-29 14:38:35] Contrast P22_vs_e15.5: found 4257 genes
INFO [2020-04-29 14:38:35] Contrast P60_vs_e15.5: found 5158 genes
INFO [2020-04-29 14:38:35] Contrast e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5: found 1814 genes
INFO [2020-04-29 14:38:36] Exporting and compressing normalized read counts table to /home/panos/public_html/metaseqR2_showcase/metaseqR2_LiverDevelopment_PANDORA/lists/normalized_counts_table.txt
INFO [2020-04-29 14:38:38] Performing meta-analysis with pandora
INFO [2020-04-29 14:38:42] Building output files…
INFO [2020-04-29 14:38:42] Contrast: e18.5_vs_e15.5
INFO [2020-04-29 14:38:42] Adding non-filtered data…
INFO [2020-04-29 14:38:43] binding annotation…
INFO [2020-04-29 14:38:43] binding p-values…
INFO [2020-04-29 14:38:43] binding FDRs…
INFO [2020-04-29 14:38:43] binding meta p-values…
INFO [2020-04-29 14:38:43] binding adjusted meta p-values…
INFO [2020-04-29 14:38:43] binding natural normalized fold changes…
INFO [2020-04-29 14:38:43] Writing output…
INFO [2020-04-29 14:38:43] Adding filtered data…
INFO [2020-04-29 14:38:43] binding annotation…
INFO [2020-04-29 14:38:43] binding p-values…
INFO [2020-04-29 14:38:44] binding FDRs…
INFO [2020-04-29 14:38:44] binding meta p-values…
INFO [2020-04-29 14:38:44] binding adjusted meta p-values…
INFO [2020-04-29 14:38:45] binding natural normalized fold changes…
INFO [2020-04-29 14:38:46] Writing output…
INFO [2020-04-29 14:38:47] Adding report data…
INFO [2020-04-29 14:38:48] binding annotation…
INFO [2020-04-29 14:38:48] binding meta p-values…
INFO [2020-04-29 14:38:48] binding adjusted meta p-values…
INFO [2020-04-29 14:38:48] binding log2 normalized fold changes…
INFO [2020-04-29 14:38:48] binding normalized mean counts…
INFO [2020-04-29 14:38:48] binding normalized mean counts…
INFO [2020-04-29 14:38:49] Contrast: P0.5_vs_e15.5
INFO [2020-04-29 14:38:49] Adding non-filtered data…
INFO [2020-04-29 14:38:49] binding annotation…
INFO [2020-04-29 14:38:49] binding p-values…
INFO [2020-04-29 14:38:49] binding FDRs…
INFO [2020-04-29 14:38:49] binding meta p-values…
INFO [2020-04-29 14:38:49] binding adjusted meta p-values…
INFO [2020-04-29 14:38:49] binding natural normalized fold changes…
INFO [2020-04-29 14:38:49] Writing output…
INFO [2020-04-29 14:38:49] Adding filtered data…
INFO [2020-04-29 14:38:49] binding annotation…
INFO [2020-04-29 14:38:49] binding p-values…
INFO [2020-04-29 14:38:49] binding FDRs…
INFO [2020-04-29 14:38:49] binding meta p-values…
INFO [2020-04-29 14:38:49] binding adjusted meta p-values…
INFO [2020-04-29 14:38:51] binding natural normalized fold changes…
INFO [2020-04-29 14:38:52] Writing output…
INFO [2020-04-29 14:38:53] Adding report data…
INFO [2020-04-29 14:38:53] binding annotation…
INFO [2020-04-29 14:38:53] binding meta p-values…
INFO [2020-04-29 14:38:53] binding adjusted meta p-values…
INFO [2020-04-29 14:38:54] binding log2 normalized fold changes…
INFO [2020-04-29 14:38:54] binding normalized mean counts…
INFO [2020-04-29 14:38:54] binding normalized mean counts…
INFO [2020-04-29 14:38:54] Contrast: P22_vs_e15.5
INFO [2020-04-29 14:38:54] Adding non-filtered data…
INFO [2020-04-29 14:38:54] binding annotation…
INFO [2020-04-29 14:38:54] binding p-values…
INFO [2020-04-29 14:38:54] binding FDRs…
INFO [2020-04-29 14:38:54] binding meta p-values…
INFO [2020-04-29 14:38:54] binding adjusted meta p-values…
INFO [2020-04-29 14:38:55] binding natural normalized fold changes…
INFO [2020-04-29 14:38:55] Writing output…
INFO [2020-04-29 14:38:55] Adding filtered data…
INFO [2020-04-29 14:38:55] binding annotation…
INFO [2020-04-29 14:38:55] binding p-values…
INFO [2020-04-29 14:38:55] binding FDRs…
INFO [2020-04-29 14:38:55] binding meta p-values…
INFO [2020-04-29 14:38:55] binding adjusted meta p-values…
INFO [2020-04-29 14:38:56] binding natural normalized fold changes…
INFO [2020-04-29 14:38:57] Writing output…
INFO [2020-04-29 14:38:59] Adding report data…
INFO [2020-04-29 14:38:59] binding annotation…
INFO [2020-04-29 14:38:59] binding meta p-values…
INFO [2020-04-29 14:38:59] binding adjusted meta p-values…
INFO [2020-04-29 14:38:59] binding log2 normalized fold changes…
INFO [2020-04-29 14:38:59] binding normalized mean counts…
INFO [2020-04-29 14:39:00] binding normalized mean counts…
INFO [2020-04-29 14:39:00] Contrast: P60_vs_e15.5
INFO [2020-04-29 14:39:00] Adding non-filtered data…
INFO [2020-04-29 14:39:00] binding annotation…
INFO [2020-04-29 14:39:00] binding p-values…
INFO [2020-04-29 14:39:00] binding FDRs…
INFO [2020-04-29 14:39:00] binding meta p-values…
INFO [2020-04-29 14:39:00] binding adjusted meta p-values…
INFO [2020-04-29 14:39:00] binding natural normalized fold changes…
INFO [2020-04-29 14:39:00] Writing output…
INFO [2020-04-29 14:39:01] Adding filtered data…
INFO [2020-04-29 14:39:01] binding annotation…
INFO [2020-04-29 14:39:01] binding p-values…
INFO [2020-04-29 14:39:01] binding FDRs…
INFO [2020-04-29 14:39:01] binding meta p-values…
INFO [2020-04-29 14:39:01] binding adjusted meta p-values…
INFO [2020-04-29 14:39:02] binding natural normalized fold changes…
INFO [2020-04-29 14:39:03] Writing output…
INFO [2020-04-29 14:39:05] Adding report data…
INFO [2020-04-29 14:39:05] binding annotation…
INFO [2020-04-29 14:39:05] binding meta p-values…
INFO [2020-04-29 14:39:05] binding adjusted meta p-values…
INFO [2020-04-29 14:39:05] binding log2 normalized fold changes…
INFO [2020-04-29 14:39:05] binding normalized mean counts…
INFO [2020-04-29 14:39:05] binding normalized mean counts…
INFO [2020-04-29 14:39:06] Contrast: e18.5_vs_P0.5_vs_P4_vs_P14_vs_P22_vs_P60_vs_e15.5
INFO [2020-04-29 14:39:06] Adding non-filtered data…
INFO [2020-04-29 14:39:06] binding annotation…
INFO [2020-04-29 14:39:06] binding p-values…
INFO [2020-04-29 14:39:06] binding FDRs…
INFO [2020-04-29 14:39:06] binding meta p-values…
INFO [2020-04-29 14:39:06] binding adjusted meta p-values…
INFO [2020-04-29 14:39:08] binding natural normalized fold changes…
INFO [2020-04-29 14:39:08] Writing output…
INFO [2020-04-29 14:39:09] Adding filtered data…
INFO [2020-04-29 14:39:09] binding annotation…
INFO [2020-04-29 14:39:09] binding p-values…
INFO [2020-04-29 14:39:09] binding FDRs…
INFO [2020-04-29 14:39:09] binding meta p-values…
INFO [2020-04-29 14:39:09] binding adjusted meta p-values…
INFO [2020-04-29 14:39:17] binding natural normalized fold changes…
INFO [2020-04-29 14:39:18] Writing output…
INFO [2020-04-29 14:39:20] Adding report data…
INFO [2020-04-29 14:39:20] binding annotation…
INFO [2020-04-29 14:39:20] binding meta p-values…
INFO [2020-04-29 14:39:20] binding adjusted meta p-values…
INFO [2020-04-29 14:39:23] binding log2 normalized fold changes…
INFO [2020-04-29 14:39:23] binding normalized mean counts…
INFO [2020-04-29 14:39:23] binding normalized mean counts…
INFO [2020-04-29 14:39:23] binding normalized mean counts…
INFO [2020-04-29 14:39:24] binding normalized mean counts…
INFO [2020-04-29 14:39:24] binding normalized mean counts…
INFO [2020-04-29 14:39:24] binding normalized mean counts…
INFO [2020-04-29 14:39:24] binding normalized mean counts…
INFO [2020-04-29 14:39:25] Creating quality control graphs…
INFO [2020-04-29 14:39:25] Plotting in png format…
INFO [2020-04-29 14:39:26] Importing foldvenn
INFO [2020-04-29 14:39:31] deseq2
INFO [2020-04-29 14:39:31] edger
INFO [2020-04-29 14:39:31] limma
INFO [2020-04-29 14:39:31] absseq
INFO [2020-04-29 14:39:31] dss
INFO [2020-04-29 14:39:31] pandora
INFO [2020-04-29 14:39:31] Writing plot database in /home/panos/public_html/metaseqR2_showcase/metaseqR2_LiverDevelopment_PANDORA/data/reportdb.js
INFO [2020-04-29 14:39:31] Creating HTML report…
INFO [2020-04-29 14:39:31] Compressing figures…
INFO [2020-04-29 14:39:32] Downloading required JavaScript libraries…